Mr. Mellon's Need to Know Physics Review Sheet

Kinematics (Units 2-3)

- Scalar quantities only have a magnitude (size) - e.g., speed, power, energy, time, charge...
- Vector quantities have a magnitude (size) and direction - e.g., momentum, velocity, acceleration, fields...
- Distance $($ scalar $)=$ total length traveled vs. Displacement $($ vector $)=$ change in position
- $\underline{\text { Average }}$ Speed $=\underline{\text { distance } / t i m e ~ v s . ~} \underline{\text { Average Velocity }}=\underline{\text { displacement }} / \mathrm{time}$
- Resultant: sum of vectors (use Head-to-Tail Method to find). Equilibrant: same size, but opposite direction
- Projectile Motion - horizontal acceleration is ZERO and the vertical acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ down
- Horizontal Projectiles important note: initial VERTICAL velocity is ZERO
- Projectiles at an Angle important notes:
- break initial velocity into x and y components $\left(\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \theta\right)$
- at its maximum height, vertical velocity equals ZERO

- the time to reach its maximum height is HALF of its total flight time (if fired on flat surface)
- $d=v t$ is the ONLY equation you can use for HORIZONTAL motion (since $a_{x}=0$)
- Greatest range (horizontal distance) at 45° and greatest time in air at 90° (if fired on flat surface)
- Distance vs. Time Graphs
- slope of the line equals velocity
- curved line indicates accelerated motion
- straight angled line indicates constant velocity $(a=0$, net force $=0$, object is in equilibrium)
- Velocity vs. Time Graphs
- slope of the line equals acceleration
- area underneath the line equals the displacement

Forces and Friction (Unit 4)

- Inertia \approx mass of an object (Which object has the most inertia? The one with the greatest mass.)
- $\mathrm{F}_{\text {net }}=\mathrm{ma}$ and $\mathrm{F}_{\text {net }}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{2} \ldots$ (consider direction (+ and -) when adding forces)
- If an object is in equilibrium (balanced forces), Fnet $=0$ and object is either at rest or in constant velocity ($a=0$)
- For every force, there is an equal and opposite direction force (when a bus hits a bug, F on bus $=-\mathrm{F}$ on bug)
- WEIGHT $=$ Force due to Gravity $=$ Gravitational Force $=$ F $_{g}=\mathbf{m g}$ ("Fg mg")
- Normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is the force from surface pushing perpendicular to the surface $\left(\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg} \underline{\mathbf{I F}}\right.$ those are the only two vertical forces and the object is on a flat horizontal surface that is NOT accelerating vertically)
- Elevator problems: Normal force $\left(\mathbf{F}_{\mathbf{N}}\right)=$ scale reading
- if accelerating up: you appear heavier on a scale (increase in F_{N} and $\mathrm{F}_{\mathrm{N}}>\mathrm{F}_{\mathrm{g}}$)
- if accelerating down: you appear lighter on a scale (decrease in F_{N} and $\mathrm{F}_{\mathrm{N}}<\mathrm{F}_{\mathrm{g}}$))
- Static friction opposes the start of motion while kinetic friction opposes an object already in motion
- Find minimum force needed to START motion by calculating STATIC friction; in order to keep it moving at a constant velocity, calculate KINETIC friction (for both cases assume $\mathrm{F}_{\text {applied }}=\mathrm{F}_{\mathrm{f}}$ since $\mathrm{a}=0$)
- If an object is on an INCLINE plane/ramp: $\mathrm{F}_{\mathrm{gx}(\text { parallel) })}=\mathrm{F}_{g} \sin \Theta$ and $\mathrm{F}_{\text {gy(perpendicular) }}=\mathrm{F}_{g} \cos \Theta$ and if at rest or moving down at a constant velocity $\mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{gx}}$ and $\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{gy}}$

Circular Motion and Universal Law of Gravity (Unit 5)

- IMPORTANT EQ. NOT ON REF. TABS.: Circular speed $=v=2 \pi r / T$ and $F_{c}=m v^{2} / r$
- Velocity vector is TANGENT to the circle; centripetal acceleration and force are directed TOWARD the CENTER
- \uparrow distance, $\downarrow \mathrm{Fg}$ (inverse squared -e.g. - if distance is doubled, Fg is quartered)

Momentum and Impulse (Unit 6)

- When an object experiences a net force for a period of time, its momentum changes ($\mathrm{J}=\mathrm{Ft}=\Delta \mathrm{p}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}$). Remember how airbags work (cushion the blow (increase time), therefore decreasing the force)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Momentum: $\mathbf{m}_{\mathbf{a}} \mathbf{V}_{\mathbf{a}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bi}}=\mathbf{m}_{\mathrm{a}} \mathbf{v}_{\mathbf{a f}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bf}}$ if they stick together: $\mathrm{m}_{\mathrm{a}} \mathrm{V}_{\mathrm{ai}}+\mathrm{m}_{\mathrm{b}} \mathrm{V}_{\mathrm{bi}}=\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{b}}\right) \mathrm{v}_{\mathrm{f}}$
- In the case of an explosion: total momentum before and after $=0$ (therefore, the momentum of each object after are EQUAL and OPPOSITE DIRECTION; $m_{a} \mathrm{v}_{\mathrm{f}}=-\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{f}}$)

Energy, Work, and Power (Unit 7)

- Work $=\mathrm{Fd}=\Delta \mathrm{E}$ (if no displacement, no work, no change in energy)
- The force that is PARALLEL to displacement is the amount of force being applied ($\mathrm{W}=\mathrm{F} \cos \theta \mathrm{d}$)
- Power is the RATE of doing work/using energy ($\mathrm{P}=\mathrm{W} / \mathrm{t}$)
- Potential Energy = Stored Energy (Gravitational PE is based on HEIGHT; Elastic PE is based on how far a spring is stretched)
- Kinetic Energy $=$ Energy from Motion $\left(\mathrm{KE}=1 / 2 \mathrm{mv}^{2} \rightarrow\right.$ doubling v, quadruples KE)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Energy: $\mathbf{K E}_{\mathbf{i}}+\mathbf{P E}_{\mathbf{i}} \pm \mathbf{W}=\mathbf{K E}_{\mathbf{f}}+\mathbf{P E}_{\mathbf{f}}$
- Work can either add (+) or take away (-) mechanical energy ($\mathrm{ME}=\mathrm{KE}+\mathrm{PE}$) from a system
- Internal Energy can be HEAT GENERATED BY FRICTION and can take away ME
$\mathbf{2}^{\text {nd }}$ Semester Waves and Sound (Unit 8)
- Transverse waves (e.g., light/EM waves, guitar string) $=$ motion perpendicular to energy
- Longitudinal waves (e.g., sound) $=$ motion parallel to energy $\left(\mathrm{v}_{\text {light }}(E \mathrm{M}\right.$ waves $\left.)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \ggg \mathrm{v}_{\text {sound }}(331 \mathrm{~m} / \mathrm{s})\right)$
- Mechanical waves require a medium to travel in and their energy depends on the amplitude of the wave.
- Speed of a wave depends on the medium only; so increasing f, decreases λ in a given medium
- Period is the time for one cycle ($\mathrm{T}=\mathrm{t} / \#$ of cycles in t); λ is length for one cycle ($\lambda=$ length/\# of cycles in length)
- Max. Constructive Interference: increase in amplitude (size of wave) (colliding waves 0° in phase)
- Max. Destructive Interference: decrease in amplitude (size of wave) (colliding waves 180° out of phase)
- Standing wave: created by two waves with same amplitude, same wavelength, same frequency, traveling the same medium, but in OPPOSITE DIRECTION.
- Nodes - destructive interference (no amplitude) \& Antinodes - constructive interference (max. Amplitude)
- Doppler Effect: change in apparent frequency due to motion (If moving away, observer f and pitch decreases and wavelength increases. If approaching, observer f and pitch increase and wavelength decreases)
- Resonance: forced vibration due to matching frequencies (think of opera singer shattering glass)
- Diffraction: bending/spreading of a wave around a barrier (SMALLER THE OPENING AND LONGER THE WAVELENGTH, THE GREATER THE DIFFRACTION)

Light (Unit 9)

- ALL electromagnetic waves (gamma, x-ray, radio...) in a vacuum move at the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- Electromagnetic Radiation/Wave energy is directly related to frequency ($\mathrm{E}_{\mathrm{photon}}(\mathrm{in} \mathrm{J})=\mathrm{hf}$)
- ALWAYS MEASURE FROM THE NORMAL IN A RAY DIAGRAM!!!
- Dispersion: Separating white light into individual colors (frequencies) (think rainbows)
- Refraction: Important equation: $\mathbf{n}_{1} \sin \boldsymbol{\theta}_{1}=\mathbf{n}_{2} \sin \boldsymbol{\theta}_{2}$
- When light (EM) wave enters a GREATER index of refraction: speed and wavelength decrease, it bends TOWARD the normal, frequency remains constant
- When light (EM) wave enters a SMALLER index of refraction: speed and wavelength increase, it bends AWAY from normal, frequency remains constant

Electrostatics, Electricity, and Magnetism (Units 10, 11, and 12)

- ONLY NEGATIVE CHARGES MOVE (objects become positively charged by losing electrons (negative charge) and become negatively charged by gaining electrons (negative charge))
- Elementary charge $=$ charge of an electron or proton $=1.6 \times 10^{-19} \mathrm{C}$
- Opposites attract, likes repel, neutral objects are attracted to either a + or - charged objects
- You CAN NOT HAVE FRACTIONS OF ELEMENTARY CHARGES (e.g. - 1.65 e does not exist)
- Conservation of charge: Total charge is divided evenly between objects that come in contact with each other
- Electric Field: Field lines go AWAY from positive charges and TOWARD negative charges.
- Electric field between oppositely charged plates is uniform (constant) anywhere between the plates.
- MAKE VIRP TABLES FOR SERIES/PARALLEL CIRCUIT PROBLEMS
- Series - One path for I (I is the same through each device, if \uparrow \# of resistors then total $I \downarrow \& P \downarrow$)
- Parallel - MULTIPLE paths for I (V is the same across each device, if \uparrow \# of resistors then total $I \uparrow \& P \uparrow$)
- Magnetic Field: Field lines go AWAY from North Pole and TOWARD South Pole.
- Moving charged particles create magnetic and electric fields
- All field lines (Magnetic, Electric, or Gravitational) never overlap/cross and the field is strongest where the lines are closest together.
Modern Physics (Unit 13) I am out of space and we just covered this unit so...um....uh...just use your Ref. Tabs.!!!

Mr. Mellon's Need to Know Physics Review Sheet

Kinematics (Units 2-3)

- Scalar quantities only have a magnitude (size) - e.g., speed, power, energy, time, charge...
- Vector quantities have a magnitude (size) and direction - e.g., momentum, velocity, acceleration, fields...
- Distance $($ scalar $)=$ total length traveled vs. Displacement $($ vector $)=$ change in position
- $\underline{\text { Average }}$ Speed $=\underline{\text { distance } / t i m e ~ v s . ~} \underline{\text { Average Velocity }}=\underline{\text { displacement }} / \mathrm{time}$
- Resultant: sum of vectors (use Head-to-Tail Method to find). Equilibrant: same size, but opposite direction
- Projectile Motion - horizontal acceleration is ZERO and the vertical acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ down
- Horizontal Projectiles important note: initial VERTICAL velocity is ZERO
- Projectiles at an Angle important notes:
- break initial velocity into x and y components $\left(\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \theta\right)$
- at its maximum height, vertical velocity equals ZERO

- the time to reach its maximum height is HALF of its total flight time (if fired on flat surface)
- $d=v t$ is the ONLY equation you can use for HORIZONTAL motion (since $a_{x}=0$)
- Greatest range (horizontal distance) at 45° and greatest time in air at 90° (if fired on flat surface)
- Distance vs. Time Graphs
- slope of the line equals velocity
- curved line indicates accelerated motion
- straight angled line indicates constant velocity $(a=0$, net force $=0$, object is in equilibrium)
- Velocity vs. Time Graphs
- slope of the line equals acceleration
- area underneath the line equals the displacement

Forces and Friction (Unit 4)

- Inertia \approx mass of an object (Which object has the most inertia? The one with the greatest mass.)
- $\mathrm{F}_{\text {net }}=\mathrm{ma}$ and $\mathrm{F}_{\text {net }}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{2} \ldots$ (consider direction (+ and -) when adding forces)
- If an object is in equilibrium (balanced forces), Fnet $=0$ and object is either at rest or in constant velocity ($a=0$)
- For every force, there is an equal and opposite direction force (when a bus hits a bug, F on bus $=-\mathrm{F}$ on bug)
- WEIGHT $=$ Force due to Gravity $=$ Gravitational Force $=$ F $_{g}=\mathbf{m g}$ ("Fg mg")
- Normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is the force from surface pushing perpendicular to the surface $\left(\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg} \underline{\mathbf{I F}}\right.$ those are the only two vertical forces and the object is on a flat horizontal surface that is NOT accelerating vertically)
- Elevator problems: Normal force $\left(\mathbf{F}_{\mathbf{N}}\right)=$ scale reading
- if accelerating up: you appear heavier on a scale (increase in F_{N} and $\mathrm{F}_{\mathrm{N}}>\mathrm{F}_{\mathrm{g}}$)
- if accelerating down: you appear lighter on a scale (decrease in F_{N} and $\mathrm{F}_{\mathrm{N}}<\mathrm{F}_{\mathrm{g}}$))
- Static friction opposes the start of motion while kinetic friction opposes an object already in motion
- Find minimum force needed to START motion by calculating STATIC friction; in order to keep it moving at a constant velocity, calculate KINETIC friction (for both cases assume $\mathrm{F}_{\text {applied }}=\mathrm{F}_{\mathrm{f}}$ since $\mathrm{a}=0$)
- If an object is on an INCLINE plane/ramp: $\mathrm{F}_{\mathrm{gx}(\text { parallel) })}=\mathrm{F}_{g} \sin \Theta$ and $\mathrm{F}_{\text {gy(perpendicular) }}=\mathrm{F}_{g} \cos \Theta$ and if at rest or moving down at a constant velocity $\mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{gx}}$ and $\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{gy}}$

Circular Motion and Universal Law of Gravity (Unit 5)

- IMPORTANT EQ. NOT ON REF. TABS.: Circular speed $=v=2 \pi r / T$ and $F_{c}=m v^{2} / r$
- Velocity vector is TANGENT to the circle; centripetal acceleration and force are directed TOWARD the CENTER
- \uparrow distance, $\downarrow \mathrm{Fg}$ (inverse squared -e.g. - if distance is doubled, Fg is quartered)

Momentum and Impulse (Unit 6)

- When an object experiences a net force for a period of time, its momentum changes ($\mathrm{J}=\mathrm{Ft}=\Delta \mathrm{p}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}$). Remember how airbags work (cushion the blow (increase time), therefore decreasing the force)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Momentum: $\mathbf{m}_{\mathbf{a}} \mathbf{V}_{\mathbf{a}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bi}}=\mathbf{m}_{\mathrm{a}} \mathbf{v}_{\mathbf{a f}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bf}}$ if they stick together: $\mathrm{m}_{\mathrm{a}} \mathrm{V}_{\mathrm{ai}}+\mathrm{m}_{\mathrm{b}} \mathrm{V}_{\mathrm{bi}}=\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{b}}\right) \mathrm{v}_{\mathrm{f}}$
- In the case of an explosion: total momentum before and after $=0$ (therefore, the momentum of each object after are EQUAL and OPPOSITE DIRECTION; $m_{a} \mathrm{v}_{\mathrm{f}}=-\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{f}}$)

Energy, Work, and Power (Unit 7)

- Work $=\mathrm{Fd}=\Delta \mathrm{E}$ (if no displacement, no work, no change in energy)
- The force that is PARALLEL to displacement is the amount of force being applied ($\mathrm{W}=\mathrm{F} \cos \theta \mathrm{d}$)
- Power is the RATE of doing work/using energy ($\mathrm{P}=\mathrm{W} / \mathrm{t}$)
- Potential Energy = Stored Energy (Gravitational PE is based on HEIGHT; Elastic PE is based on how far a spring is stretched)
- Kinetic Energy $=$ Energy from Motion $\left(\mathrm{KE}=1 / 2 \mathrm{mv}^{2} \rightarrow\right.$ doubling v, quadruples KE)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Energy: $\mathbf{K E}_{\mathbf{i}}+\mathbf{P E}_{\mathbf{i}} \pm \mathbf{W}=\mathbf{K E}_{\mathbf{f}}+\mathbf{P E}_{\mathbf{f}}$
- Work can either add (+) or take away (-) mechanical energy ($\mathrm{ME}=\mathrm{KE}+\mathrm{PE}$) from a system
- Internal Energy can be HEAT GENERATED BY FRICTION and can take away ME
$\mathbf{2}^{\text {nd }}$ Semester Waves and Sound (Unit 8)
- Transverse waves (e.g., light/EM waves, guitar string) $=$ motion perpendicular to energy
- Longitudinal waves (e.g., sound) $=$ motion parallel to energy $\left(\mathrm{v}_{\text {light }}(E \mathrm{M}\right.$ waves $\left.)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \ggg \mathrm{v}_{\text {sound }}(331 \mathrm{~m} / \mathrm{s})\right)$
- Mechanical waves require a medium to travel in and their energy depends on the amplitude of the wave.
- Speed of a wave depends on the medium only; so increasing f, decreases λ in a given medium
- Period is the time for one cycle ($\mathrm{T}=\mathrm{t} / \#$ of cycles in t); λ is length for one cycle ($\lambda=$ length/\# of cycles in length)
- Max. Constructive Interference: increase in amplitude (size of wave) (colliding waves 0° in phase)
- Max. Destructive Interference: decrease in amplitude (size of wave) (colliding waves 180° out of phase)
- Standing wave: created by two waves with same amplitude, same wavelength, same frequency, traveling the same medium, but in OPPOSITE DIRECTION.
- Nodes - destructive interference (no amplitude) \& Antinodes - constructive interference (max. Amplitude)
- Doppler Effect: change in apparent frequency due to motion (If moving away, observer f and pitch decreases and wavelength increases. If approaching, observer f and pitch increase and wavelength decreases)
- Resonance: forced vibration due to matching frequencies (think of opera singer shattering glass)
- Diffraction: bending/spreading of a wave around a barrier (SMALLER THE OPENING AND LONGER THE WAVELENGTH, THE GREATER THE DIFFRACTION)

Light (Unit 9)

- ALL electromagnetic waves (gamma, x-ray, radio...) in a vacuum move at the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- Electromagnetic Radiation/Wave energy is directly related to frequency ($\mathrm{E}_{\mathrm{photon}}(\mathrm{in} \mathrm{J})=\mathrm{hf}$)
- ALWAYS MEASURE FROM THE NORMAL IN A RAY DIAGRAM!!!
- Dispersion: Separating white light into individual colors (frequencies) (think rainbows)
- Refraction: Important equation: $\mathbf{n}_{1} \sin \boldsymbol{\theta}_{1}=\mathbf{n}_{2} \sin \boldsymbol{\theta}_{2}$
- When light (EM) wave enters a GREATER index of refraction: speed and wavelength decrease, it bends TOWARD the normal, frequency remains constant
- When light (EM) wave enters a SMALLER index of refraction: speed and wavelength increase, it bends AWAY from normal, frequency remains constant

Electrostatics, Electricity, and Magnetism (Units 10, 11, and 12)

- ONLY NEGATIVE CHARGES MOVE (objects become positively charged by losing electrons (negative charge) and become negatively charged by gaining electrons (negative charge))
- Elementary charge $=$ charge of an electron or proton $=1.6 \times 10^{-19} \mathrm{C}$
- Opposites attract, likes repel, neutral objects are attracted to either a + or - charged objects
- You CAN NOT HAVE FRACTIONS OF ELEMENTARY CHARGES (e.g. - 1.65 e does not exist)
- Conservation of charge: Total charge is divided evenly between objects that come in contact with each other
- Electric Field: Field lines go AWAY from positive charges and TOWARD negative charges.
- Electric field between oppositely charged plates is uniform (constant) anywhere between the plates.
- MAKE VIRP TABLES FOR SERIES/PARALLEL CIRCUIT PROBLEMS
- Series - One path for I (I is the same through each device, if \uparrow \# of resistors then total $I \downarrow \& P \downarrow$)
- Parallel - MULTIPLE paths for I (V is the same across each device, if \uparrow \# of resistors then total $I \uparrow \& P \uparrow$)
- Magnetic Field: Field lines go AWAY from North Pole and TOWARD South Pole.
- Moving charged particles create magnetic and electric fields
- All field lines (Magnetic, Electric, or Gravitational) never overlap/cross and the field is strongest where the lines are closest together.
Modern Physics (Unit 13) I am out of space and we just covered this unit so...um....uh...just use your Ref. Tabs.!!!

Mr. Mellon's Need to Know Physics Review Sheet

Kinematics (Units 2-3)

- Scalar quantities only have a magnitude (size) - e.g., speed, power, energy, time, charge...
- Vector quantities have a magnitude (size) and direction - e.g., momentum, velocity, acceleration, fields...
- Distance $($ scalar $)=$ total length traveled vs. Displacement $($ vector $)=$ change in position
- $\underline{\text { Average }}$ Speed $=\underline{\text { distance } / t i m e ~ v s . ~} \underline{\text { Average Velocity }}=\underline{\text { displacement }} / \mathrm{time}$
- Resultant: sum of vectors (use Head-to-Tail Method to find). Equilibrant: same size, but opposite direction
- Projectile Motion - horizontal acceleration is ZERO and the vertical acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ down
- Horizontal Projectiles important note: initial VERTICAL velocity is ZERO
- Projectiles at an Angle important notes:
- break initial velocity into x and y components $\left(\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \theta\right)$
- at its maximum height, vertical velocity equals ZERO

- the time to reach its maximum height is HALF of its total flight time (if fired on flat surface)
- $d=v t$ is the ONLY equation you can use for HORIZONTAL motion (since $a_{x}=0$)
- Greatest range (horizontal distance) at 45° and greatest time in air at 90° (if fired on flat surface)
- Distance vs. Time Graphs
- slope of the line equals velocity
- curved line indicates accelerated motion
- straight angled line indicates constant velocity $(a=0$, net force $=0$, object is in equilibrium)
- Velocity vs. Time Graphs
- slope of the line equals acceleration
- area underneath the line equals the displacement

Forces and Friction (Unit 4)

- Inertia \approx mass of an object (Which object has the most inertia? The one with the greatest mass.)
- $\mathrm{F}_{\text {net }}=\mathrm{ma}$ and $\mathrm{F}_{\text {net }}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{2} \ldots$ (consider direction (+ and -) when adding forces)
- If an object is in equilibrium (balanced forces), Fnet $=0$ and object is either at rest or in constant velocity ($a=0$)
- For every force, there is an equal and opposite direction force (when a bus hits a bug, F on bus $=-\mathrm{F}$ on bug)
- WEIGHT $=$ Force due to Gravity $=$ Gravitational Force $=$ F $_{g}=\mathbf{m g}$ ("Fg mg")
- Normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is the force from surface pushing perpendicular to the surface $\left(\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg} \underline{\mathbf{I F}}\right.$ those are the only two vertical forces and the object is on a flat horizontal surface that is NOT accelerating vertically)
- Elevator problems: Normal force $\left(\mathbf{F}_{\mathbf{N}}\right)=$ scale reading
- if accelerating up: you appear heavier on a scale (increase in F_{N} and $\mathrm{F}_{\mathrm{N}}>\mathrm{F}_{\mathrm{g}}$)
- if accelerating down: you appear lighter on a scale (decrease in F_{N} and $\mathrm{F}_{\mathrm{N}}<\mathrm{F}_{\mathrm{g}}$))
- Static friction opposes the start of motion while kinetic friction opposes an object already in motion
- Find minimum force needed to START motion by calculating STATIC friction; in order to keep it moving at a constant velocity, calculate KINETIC friction (for both cases assume $\mathrm{F}_{\text {applied }}=\mathrm{F}_{\mathrm{f}}$ since $\mathrm{a}=0$)
- If an object is on an INCLINE plane/ramp: $\mathrm{F}_{\mathrm{gx}(\text { parallel) })}=\mathrm{F}_{g} \sin \Theta$ and $\mathrm{F}_{\text {gy(perpendicular) }}=\mathrm{F}_{g} \cos \Theta$ and if at rest or moving down at a constant velocity $\mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{gx}}$ and $\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{gy}}$

Circular Motion and Universal Law of Gravity (Unit 5)

- IMPORTANT EQ. NOT ON REF. TABS.: Circular speed $=v=2 \pi r / T$ and $F_{c}=m v^{2} / r$
- Velocity vector is TANGENT to the circle; centripetal acceleration and force are directed TOWARD the CENTER
- \uparrow distance, $\downarrow \mathrm{Fg}$ (inverse squared -e.g. - if distance is doubled, Fg is quartered)

Momentum and Impulse (Unit 6)

- When an object experiences a net force for a period of time, its momentum changes ($\mathrm{J}=\mathrm{Ft}=\Delta \mathrm{p}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}$). Remember how airbags work (cushion the blow (increase time), therefore decreasing the force)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Momentum: $\mathbf{m}_{\mathbf{a}} \mathbf{V}_{\mathbf{a}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bi}}=\mathbf{m}_{\mathrm{a}} \mathbf{v}_{\mathbf{a f}}+\mathbf{m}_{\mathrm{b}} \mathbf{V}_{\mathrm{bf}}$ if they stick together: $\mathrm{m}_{\mathrm{a}} \mathrm{V}_{\mathrm{ai}}+\mathrm{m}_{\mathrm{b}} \mathrm{V}_{\mathrm{bi}}=\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{b}}\right) \mathrm{v}_{\mathrm{f}}$
- In the case of an explosion: total momentum before and after $=0$ (therefore, the momentum of each object after are EQUAL and OPPOSITE DIRECTION; $m_{a} \mathrm{v}_{\mathrm{f}}=-\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{f}}$)

Energy, Work, and Power (Unit 7)

- Work $=\mathrm{Fd}=\Delta \mathrm{E}$ (if no displacement, no work, no change in energy)
- The force that is PARALLEL to displacement is the amount of force being applied ($\mathrm{W}=\mathrm{F} \cos \theta \mathrm{d}$)
- Power is the RATE of doing work/using energy ($\mathrm{P}=\mathrm{W} / \mathrm{t}$)
- Potential Energy = Stored Energy (Gravitational PE is based on HEIGHT; Elastic PE is based on how far a spring is stretched)
- Kinetic Energy $=$ Energy from Motion $\left(\mathrm{KE}=1 / 2 \mathrm{mv}^{2} \rightarrow\right.$ doubling v, quadruples KE)
- IMPORTANT EQ. NOT ON REF. TABS.: Conservation of Energy: $\mathbf{K E}_{\mathbf{i}}+\mathbf{P E}_{\mathbf{i}} \pm \mathbf{W}=\mathbf{K E}_{\mathbf{f}}+\mathbf{P E}_{\mathbf{f}}$
- Work can either add (+) or take away (-) mechanical energy ($\mathrm{ME}=\mathrm{KE}+\mathrm{PE}$) from a system
- Internal Energy can be HEAT GENERATED BY FRICTION and can take away ME
$\mathbf{2}^{\text {nd }}$ Semester Waves and Sound (Unit 8)
- Transverse waves (e.g., light/EM waves, guitar string) $=$ motion perpendicular to energy
- Longitudinal waves (e.g., sound) $=$ motion parallel to energy $\left(\mathrm{v}_{\text {light }}(E \mathrm{M}\right.$ waves $\left.)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \ggg \mathrm{v}_{\text {sound }}(331 \mathrm{~m} / \mathrm{s})\right)$
- Mechanical waves require a medium to travel in and their energy depends on the amplitude of the wave.
- Speed of a wave depends on the medium only; so increasing f, decreases λ in a given medium
- Period is the time for one cycle ($\mathrm{T}=\mathrm{t} / \#$ of cycles in t); λ is length for one cycle ($\lambda=$ length/\# of cycles in length)
- Max. Constructive Interference: increase in amplitude (size of wave) (colliding waves 0° in phase)
- Max. Destructive Interference: decrease in amplitude (size of wave) (colliding waves 180° out of phase)
- Standing wave: created by two waves with same amplitude, same wavelength, same frequency, traveling the same medium, but in OPPOSITE DIRECTION.
- Nodes - destructive interference (no amplitude) \& Antinodes - constructive interference (max. Amplitude)
- Doppler Effect: change in apparent frequency due to motion (If moving away, observer f and pitch decreases and wavelength increases. If approaching, observer f and pitch increase and wavelength decreases)
- Resonance: forced vibration due to matching frequencies (think of opera singer shattering glass)
- Diffraction: bending/spreading of a wave around a barrier (SMALLER THE OPENING AND LONGER THE WAVELENGTH, THE GREATER THE DIFFRACTION)

Light (Unit 9)

- ALL electromagnetic waves (gamma, x-ray, radio...) in a vacuum move at the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- Electromagnetic Radiation/Wave energy is directly related to frequency ($\mathrm{E}_{\mathrm{photon}}(\mathrm{in} \mathrm{J})=\mathrm{hf}$)
- ALWAYS MEASURE FROM THE NORMAL IN A RAY DIAGRAM!!!
- Dispersion: Separating white light into individual colors (frequencies) (think rainbows)
- Refraction: Important equation: $\mathbf{n}_{1} \sin \boldsymbol{\theta}_{1}=\mathbf{n}_{2} \sin \boldsymbol{\theta}_{2}$
- When light (EM) wave enters a GREATER index of refraction: speed and wavelength decrease, it bends TOWARD the normal, frequency remains constant
- When light (EM) wave enters a SMALLER index of refraction: speed and wavelength increase, it bends AWAY from normal, frequency remains constant

Electrostatics, Electricity, and Magnetism (Units 10, 11, and 12)

- ONLY NEGATIVE CHARGES MOVE (objects become positively charged by losing electrons (negative charge) and become negatively charged by gaining electrons (negative charge))
- Elementary charge $=$ charge of an electron or proton $=1.6 \times 10^{-19} \mathrm{C}$
- Opposites attract, likes repel, neutral objects are attracted to either a + or - charged objects
- You CAN NOT HAVE FRACTIONS OF ELEMENTARY CHARGES (e.g. - 1.65 e does not exist)
- Conservation of charge: Total charge is divided evenly between objects that come in contact with each other
- Electric Field: Field lines go AWAY from positive charges and TOWARD negative charges.
- Electric field between oppositely charged plates is uniform (constant) anywhere between the plates.
- MAKE VIRP TABLES FOR SERIES/PARALLEL CIRCUIT PROBLEMS
- Series - One path for I (I is the same through each device, if \uparrow \# of resistors then total $I \downarrow \& P \downarrow$)
- Parallel - MULTIPLE paths for I (V is the same across each device, if \uparrow \# of resistors then total $I \uparrow \& P \uparrow$)
- Magnetic Field: Field lines go AWAY from North Pole and TOWARD South Pole.
- Moving charged particles create magnetic and electric fields
- All field lines (Magnetic, Electric, or Gravitational) never overlap/cross and the field is strongest where the lines are closest together.
Modern Physics (Unit 13) I am out of space and we just covered this unit so...um....uh...just use your Ref. Tabs.!!!

